Accelerated Graphics Port

A high-speed point-to-point channel for attaching a video card to a computer system, primarily to assist in the acceleration of 3D computer graphics.

The Accelerated Graphics Port (AGP) was designed as a high-speed point-to-point channel for attaching a video card to a computer system, primarily to assist in the acceleration of 3D computer graphics. It was originally designed as a successor to PCI-type connections for video cards. Since 2004, AGP has been progressively phased out in favor of PCI Express (PCIe); by mid-2008, PCI Express cards dominated the market and only a few AGP models were available, with GPU manufacturers and add-in board partners eventually dropping support for the interface in favor of PCI Express.

The AGP slot first appeared on x86-compatible system boards based on Socket 7 Intel P5 Pentium and Slot 1 P6 Pentium II processors. Intel introduced AGP support with the i440LX Slot 1 chipset on August 26, 1997, and a flood of products followed by all the major system board vendors.

The first Socket 7 chipsets to support AGP were the VIA Apollo VP3, SiS 5591/5592, and the ALI Aladdin V. Intel never released an AGP-equipped Socket 7 chipset. FIC demonstrated the first Socket 7 AGP system board in November 1997 as the FIC PA-2012 based on the VIA Apollo VP3 chipset followed very quickly by the EPoX P55-VP3 also based on the VIA VP3 chipset which was first to market.

Early video chipsets featuring AGP support included the Rendition Vérité V2200, 3dfx Voodoo Banshee, Nvidia riva 128, 3Dlabs PERMEDIA 2, Intel i740, ati rage series, Matrox Millennium II, and s3 virge GX/2. Some early AGP boards used graphics processors built around PCI and were simply bridged to AGP. This resulted in the cards benefiting little from the new bus, with the only improvement used being the 66 MHz bus clock, with its resulting doubled bandwidth over PCI, and bus exclusivity. Examples of such cards were the Voodoo Banshee, Vérité V2200, Millennium II, and s3 virge GX/2. Intel's i740 was explicitly designed to exploit the new AGP feature set; in fact it was designed to texture only from AGP memory, making PCI versions of the board difficult to implement (local board RAM had to emulate AGP memory.)

microsoft first introduced AGP support into Windows 95 OEM Service Release 2 (OSR2 version 1111 or 950B) via the USB SUPPLEMENT to OSR2 patch. After applying the patch the Windows 95 system became Windows 95 version 4.00.950 B. The first Windows NT-based operating system to receive AGP support was Windows NT 4.0 with Service Pack 3, introduced in 1997. Linux support for AGP enhanced fast data transfers was first added in 1999 with the implementation of the AGPgart kernel module.

Intel released "AGP specification 1.0" in 1997. It specified 3.3 V signals and 1× and 2× speeds. Specification 2.0 documented 1.5 V signaling, which could be used at 1×, 2× and the additional 4× speed and 3.0 added 0.8 V signaling, which could be operated at 4× and 8× speeds. (1× and 2× speeds are physically possible, but were not specified.)

Available versions are listed in the adjacent table.

AGP version 3.5 is only publicly mentioned by microsoft under Universal Accelerated Graphics Port (UAGP), which specifies mandatory supports of extra registers once marked optional under AGP 3.0. Upgraded registers include PCISTS, CAPPTR, NCAPID, AGPSTAT, AGPCMD, NISTAT, NICMD. New required registers include APBASELO, APBASEHI, AGPCTRL, APSIZE, NEPG, GARTLO, GARTHI.

Advantages over PCI

As computers increasingly became graphically oriented, successive generations of graphics adapters began to push the limits of PCI, a bus with shared bandwidth. This led to the development of AGP, a "bus" dedicated to graphics adapters.

AGP is heavily based on PCI, and in fact, the AGP bus is a superset of the conventional PCI bus, and AGP cards must act as PCI cards.

The primary advantage of AGP over PCI is that it provides a dedicated pathway between the slot and the processor rather than sharing the PCI bus. In addition to a lack of contention for the bus, the direct connection allows for higher clock speeds.

The second major change is that AGP uses split transactions, where the address and data phases of a PCI transaction are separated. The card may send many address phases, and the host processes them in order. This avoids long delays, with the bus idle, during reading operations.

Third, PCI bus handshaking is simplified. Unlike PCI bus transactions whose length is negotiated on a cycle-by-cycle basis using the FRAME# and STOP# signals, AGP transfers are always a multiple of 8 bytes long, and the total length is included in the request. Further, rather than using the IRDY# and TRDY# signals for each word, data is transferred in blocks of four clock cycles (32 words at AGP 8× speed), and pauses are allowed only between blocks.

Finally, AGP allows (optional in AGP 1.0 and 2.0, mandatory in AGP 3.0) sideband addressing, meaning that the address and data buses are separated so the address phase does not use the main address/data (AD) lines at all. This is done by adding an extra 8-bit "SideBand Address" bus over which the graphics controller can issue new AGP requests while other AGP data is flowing over the main 32 address/data (AD) lines. This results in improved overall AGP data throughput.

This great improvement in memory read performance makes it practical for an AGP card to read textures directly from system RAM, while a PCI graphics card must copy it from system RAM to the card's video memory. System memory is made available using the graphics address remapping table (GART), which apportions the main memory as needed for texture storage. The maximum amount of system memory available to AGP is defined as the AGP aperture.

image
Accelerated Graphics Port
acronymn
  • AGP
source
Adapted from content published on wikipedia.org
credit
Last modified on July 30, 2020, 1:02 am
Videocide.com is a service provided by Codecide, a company located in Chicago, IL USA.
cog