In signal processing, a Chebyshev filter is a filter that minimizes the error between the idealized and the actual filter characteristic over the range of the filter, but with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. The type I Chebyshev filters are called usually just "Chebyshev filters", the type II ones are usually called "inverse Chebyshev filters".
Because of the passband ripple inherent in Chebyshev filters, the ones that have a smoother response in the passband but a more irregular response in the stopband are preferred for some applications.