Bright flashes and/or extreme contrast reduction evident in picture, caused by excessive light beaming into a camera's lens and reflecting off its internal glass elements

Lens flare refers to a phenomenon wherein light is scattered or flared in a lens system, often in response to a bright light, producing a sometimes undesirable artifact within the image. This happens through light scattered by the imaging mechanism itself, for example through internal reflection and scattering from material imperfections in the lens. Lenses with large numbers of elements such as zooms tend to exhibit greater lens flare, as they contain a relatively large number of interfaces at which internal scattering may occur. These mechanisms differ from the focused image generation mechanism, which depends on rays from the refraction of light from the subject itself.

Flare manifests itself in two ways: as visible artifacts, and as a haze across the image. The haze makes the image look "washed out" by reducing contrast and color saturation (adding light to dark image regions, and adding white to saturated regions, reducing their saturation). Visible artifacts, usually in the shape of the lens iris, are formed when light follows a pathway through the lens that contains one or more reflections from the lens surfaces.

Flare is particularly caused by very bright light sources. Most commonly, this occurs when shooting into the sun (when the sun is in frame or the lens is pointed in the direction of the sun), and is reduced by using a lens hood or other shade. For good-quality optical systems, and for most images (which do not have a bright light shining into the lens), flare is a secondary effect that is widely distributed across the image and thus not visible, although it does reduce contrast.

The spatial distribution of the lens flare typically manifests as several starbursts, rings, or circles in a row across the image or view. Lens flare patterns typically spread widely across the scene and change location with the camera's movement relative to light sources, tracking with the light position and fading as the camera points away from the bright light until it causes no flare at all. The specific spatial distribution of the flare depends on the shape of the aperture of the image formation elements. For example, if the lens has a 6-bladed aperture, the flare may have a hexagonal pattern.

Such internal scattering is also present in the human eye, and manifests in an unwanted veiling glare most obvious when viewing very bright lights or highly reflective surfaces. In some situations, eyelashes can also create flare-like irregularities, although these are technically diffraction artifacts.

When a bright light source is shining on the lens but not in its field of view, lens flare appears as a haze that washes out the image and reduces contrast. This can be avoided by shading the lens using a lens hoods. In a studio, a gobo or set of barn doors can be attached to the lighting to keep it from shining on the camera. Filters can be attached to the camera lens which will also minimise lens flare, which is especially useful for outdoor photographers.

When using an anamorphic lens, as is common in analog cinematography, lens flare can manifest itself as horizontal lines. This is most commonly seen in car headlights in a dark scene, and may be desired as part of the "film look".

Adapted from content published on wikipedia.org
  • Image By Hustvedt - Own work, CC BY-SA 3.0 — from wikimedia.org
Last modified on September 11, 2019, 8:09 pm
Videocide.com is a service provided by Codecide, a company located in Chicago, IL USA.