Bookmark.icon

Lossy

A compression scheme that discards data in order to lower file sizes.

In information technology, lossy compression or irreversible compression is the class of data encoding methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat to the right show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than through lossless techniques.

Well-designed lossy compression technology often reduces file sizes significantly before degradation is noticed by the end-user. Even when noticeable by the user, further data reduction may be desirable (e.g., for real-time communication, to reduce transmission times, or to reduce storage needs). The most widely used lossy compression algorithm is the discrete cosine transform (DCT), first published by Nasir Ahmed, T. Natarajan and K. R. Rao in 1974. Recently, a new family of sinusoidal-hyperbolic transform functions, which have comparable properties and performance with DCT, have been proposed for lossy compression.

Lossy compression is most commonly used to compress multimedia data (audio, video, and images), especially in applications such as streaming media and internet telephony. By contrast, lossless compression is typically required for text and data files, such as bank records and text articles. It can be advantageous to make a master lossless file that can then be used to produce additional copies. This allows one to avoid basing new compressed copies off of a lossy source file, which would yield additional artifacts and further unnecessary information loss.

It is possible to compress many types of digital data in a way that reduces the size of a computer file needed to store it, or the bandwidth needed to transmit it, with no loss of the full information contained in the original file. A picture, for example, is converted to a digital file by considering it to be an array of dots and specifying the color and brightness of each dot. If the picture contains an area of the same color, it can be compressed without loss by saying "200 red dots" instead of "red dot, red dot, ...(197 more times)..., red dot."

The original data contains a certain amount of information, and there is a lower limit to the size of a file that can carry all the information. Basic information theory says that there is an absolute limit in reducing the size of this data. When data is compressed, its entropy increases, and it cannot increase indefinitely. As an intuitive example, most people know that a compressed ZIP file is smaller than the original file, but repeatedly compressing the same file will not reduce the size to nothing. Most compression algorithms can recognize when further compression would be pointless and would, in fact, increase the size of the data.

In many cases, files or data streams contain more information than is needed for a particular purpose. For example, a picture may have more detail than the eye can distinguish when reproduced at the largest size intended; likewise, an audio file does not need a lot of fine detail during a very loud passage. Developing lossy compression techniques as closely matched to human perception as possible is a complex task. Sometimes the ideal is a file that provides exactly the same perception as the original, with as much digital information as possible removed; other times, perceptible loss of quality is considered a valid trade-off for the reduced data.

The terms 'irreversible' and 'reversible' are preferred over 'lossy' and 'lossless' respectively for some applications, such as medical image compression, to circumvent the negative implications of 'loss'. The type and amount of loss can affect the utility of the images. Artifacts or undesirable effects of compression may be discernible yet the result still useful for the intended purpose. Or lossy compressed images may be 'visually lossless', or in the case of medical images, so-called Diagnostically Acceptable Irreversible Compression (DAIC) may have been applied.

Key Terms

applications
content
data
file
images
loss
lossy compression
picture
red dot
size

Additional Resources

No ressources found.

Acronymn

(none found)

Synonymns

Lossy
(none found)

Comments

No comment found.

Sources & Credits

Last modified on November 8 2019
Content adapted from Wikipedia
No credits found.
Copyright 2019 Videocide.com  |  All Rights Reserved
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram