A group of picture blocks, usually four, which are analyzed during MPEG coding to give an estimate of the movement between frames

MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s (26:1 and 6:1 compression ratios respectively) without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) possible.

Today, MPEG-1 has become the most widely compatible lossy audio/video format in the world and is used in a large number of products and technologies. Perhaps the best-known part of the MPEG-1 standard is the MP3 audio format it introduced.

The MPEG-1 standard is published as ISO/IEC 11172 – Information technology—Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s.

The standard consists of the following five Parts:

  • Systems (storage and synchronization of video, audio, and other data together)
  • Video (compressed video content)
  • Audio (compressed audio content)
  • Conformance testing (testing the correctness of implementations of the standard)
  • Reference software (example software showing how to encode and decode according to the standard)

The predecessor of MPEG-1 for video coding was the H.261 standard produced by the CCITT (now known as the ITU-T). The basic architecture established in H.261 was the motion-compensated DCT hybrid video coding structure. It uses macroblocks of size 16×16 with block-based motion estimation in the encoder and motion compensation using encoder-selected motion vectors in the decoder, with residual difference coding using a discrete cosine transform (DCT) of size 8×8, scalar quantization, and variable-length codes (like Huffman codes) for entropy coding. H.261 was the first practical video coding standard, and all of its described design elements were also used in MPEG-1.

Modeled on the successful collaborative approach and the compression technologies developed by the Joint Photographic Experts Group and CCITT's Experts Group on Telephony (creators of the JPEG image compression standard and the H.261 standard for video conferencing respectively), the Moving Picture Experts Group (MPEG) working group was established in January 1988, by the initiative of Hiroshi Yasuda (Nippon Telegraph and Telephone) and Leonardo Chiariglione (CSELT). MPEG was formed to address the need for standard video and audio formats, and to build on H.261 to get better quality through the use of somewhat more complex encoding methods (e.g., supporting higher precision for motion vectors).

The development of the MPEG-1 standard began in May 1988. Fourteen video and fourteen audio codec proposals were submitted by individual companies and institutions for evaluation. The codecs were extensively tested for computational complexity and subjective (human perceived) quality, at data rates of 1.5 Mbit/s. This specific bitrate was chosen for transmission over T-1/E-1 lines and as the approximate data rate of audio CDs. The codecs that excelled in this testing were utilized as the basis for the standard and refined further, with additional features and other improvements being incorporated in the process.

After 20 meetings of the full group in various cities around the world, and 4½ years of development and testing, the final standard (for parts 1–3) was approved in early November 1992 and published a few months later. The reported completion date of the MPEG-1 standard varies greatly: a largely complete draft standard was produced in September 1990, and from that point on, only minor changes were introduced. The draft standard was publicly available for purchase. The standard was finished with the 6 November 1992 meeting. The Berkeley Plateau Multimedia Research Group developed an MPEG-1 decoder in November 1992. In July 1990, before the first draft of the MPEG-1 standard had even been written, work began on a second standard, MPEG-2, intended to extend MPEG-1 technology to provide full broadcast-quality video (as per CCIR 601) at high bitrates (3–15 Mbit/s) and support for interlaced video. Due in part to the similarity between the two codecs, the MPEG-2 standard includes full backward compatibility with MPEG-1 video, so any MPEG-2 decoder can play MPEG-1 videos.

Notably, the MPEG-1 standard very strictly defines the bitstream, and decoder function, but does not define how MPEG-1 encoding is to be performed, although a reference implementation is provided in ISO/IEC-11172-5. This means that MPEG-1 coding efficiency can drastically vary depending on the encoder used, and generally means that newer encoders perform significantly better than their predecessors. The first three parts (Systems, Video and Audio) of ISO/IEC 11172 were published in August 1993.

Adapted from content published on
Last modified on March 5, 2020, 6:32 pm is a service provided by Codecide, a company located in Chicago, IL USA.