Sound emanating from two isolated sources, intended to simulate pattern of natural human hearing.

Stereophonic sound or, more commonly, stereo, is a method of sound reproduction that creates an illusion of multi-directional audible perspective. This is usually achieved by using two or more independent audio channels through a configuration of two or more loudspeakers (or stereo headphones) in such a way as to create the impression of sound heard from various directions, as in natural hearing. Thus the term "stereophonic" applies to so-called "quadraphonic" and "surround-sound" systems as well as the more common two-channel, two-speaker systems. It is often contrasted with monophonic, or "mono" sound, where audio is heard as coming from one position, often ahead in the sound field (analogous to a visual field). Stereo sound has been in common use since the 1970s in entertainment systems such as broadcast radio, TV, recorded music, internet, computer audio, and cinema.

Stereo sound systems can be divided into two forms: the first is "true" or "natural" stereo in which a live sound is captured, with any natural reverberation or ambiance present, by an array of microphones. The signal is then reproduced over multiple loudspeakers to recreate, as closely as possible, the live sound.

Secondly "artificial" or "pan-pot" stereo, in which a single-channel (mono) sound is reproduced over multiple loudspeakers. By varying the relative amplitude of the signal sent to each speaker an artificial direction (relative to the listener) can be suggested. The control which is used to vary this relative amplitude of the signal is known as a "pan-pot" (panoramic potentiometer). By combining multiple "pan-potted" mono signals together, to make an EQ of 23445678910 a complete, yet entirely artificial, sound field can be created.

In technical usage, true stereo means a stereo that tells the truth.

During two-channel stereo recording, two microphones are placed in strategically chosen locations relative to the sound source, with both recordings simultaneously. The two recorded channels will be similar, but each will have distinct time-of-arrival and sound-pressure-level information. During playback, the listener's brain uses those subtle differences in timing and sound level to triangulate the positions of the recorded objects. Stereo recordings often cannot be played on monaural systems without a significant loss of fidelity. Since each microphone records each wavefront at a slightly different time, the wavefronts are out of phase; as a result, constructive and destructive interference can occur if both tracks are played back on the same speaker. This phenomenon is known as phase cancellation.

Adapted from content published on
  • Image By Sophie means wisdom - Own work, CC BY-SA 3.0 — from
Last modified on September 29, 2019, 11:06 am is a service provided by Codecide, a company located in Chicago, IL USA.