Waveform Audio File Format

An audio file format standard, developed by Microsoft and IBM, for storing an audio bitstream on PCs.

Waveform Audio File Format (WAVE, or more commonly known as WAV due to its filename extension; pronounced "wave" or /ˈwæv/ WAV) is an audio file format standard, developed by Microsoft and IBM, for storing an audio bitstream on PCs. It is an application of the Resource Interchange File Format (RIFF) bitstream format method for storing data in "chunks", and thus is also close to the 8SVX and the AIFF format used on Amiga and Macintosh computers, respectively. It is the main format used on Microsoft Windows systems for raw and typically uncompressed audio. The usual bitstream encoding is the linear pulse-code modulation (LPCM) format.

The WAV file is an instance of a Resource Interchange File Format (RIFF) defined by IBM and Microsoft. The RIFF format acts as a "wrapper" for various audio coding formats.

Though a WAV file can contain compressed audio, the most common WAV audio format is uncompressed audio in the linear pulse code modulation (LPCM) format. LPCM is also the standard audio coding format for audio CDs, which store two-channel LPCM audio sampled at 44,100 Hz with 16 bits per sample. Since LPCM is uncompressed and retains all of the samples of an audio track, professional users or audio experts may use the WAV format with LPCM audio for maximum audio quality. WAV files can also be edited and manipulated with relative ease using software.

The WAV format supports compressed audio using, on Microsoft Windows, the Audio Compression Manager. Any ACM codec can be used to compress a WAV file. The user interface (UI) for Audio Compression Manager may be accessed through various programs that use it, including Sound Recorder in some versions of Windows.

Beginning with Windows 2000, a WAVE_FORMAT_EXTENSIBLE header was defined which specifies multiple audio channel data along with speaker positions, eliminates ambiguity regarding sample types and container sizes in the standard WAV format and supports defining custom extensions to the format chunk.

There are some inconsistencies in the WAV format: for example, 8-bit data is unsigned while 16-bit data is signed, and many chunks duplicate information found in other chunks.



A RIFF file is a tagged file format. It has a specific container format (a chunk) that includes a four-character tag (FourCC) and the size (number of bytes) of the chunk. The tag specifies how the data within the chunk should be interpreted, and there are several standard FourCC tags. Tags consisting of all capital letters are reserved tags. The outermost chunk of a RIFF file has a RIFF form tag; the first four bytes of chunk data are a FourCC that specify the form type and are followed by a sequence of subchunks. In the case of a WAV file, those four bytes are the FourCC WAVE. The remainder of the RIFF data is a sequence of chunks describing the audio information.

The advantage of a tagged file format is that the format can be extended later without confusing existing file readers. The rule for a RIFF (or WAV) reader is that it should ignore any tagged chunk that it does not recognize. The reader won't be able to use the new information, but the reader should not be confused.

The specification for RIFF files includes the definition of an INFO chunk. The chunk may include information such as the title of the work, the author, the creation date, and copyright information. Although the INFO chunk was defined in version 1.0, the chunk was not referenced in the formal specification of a WAV file. If the chunk were present in the file, then a reader should know how to interpret it, but many readers had trouble. Some readers would abort when they encountered the chunk, some readers would process the chunk if it were the first chunk in the RIFF form, and other readers would process it if it followed all of the expected waveform data. Consequently, the safest thing to do from an interchange standpoint was to omit the INFO chunk and other extensions and send a lowest-common-denominator file. There are other INFO chunk placement problems.

RIFF files were expected to be used in international environments, so there is CSET chunk to specify the country code, language, dialect, and code page for the strings in a RIFF file. For example, specifying an appropriate CSET chunk should allow the strings in an INFO chunk (and other chunks throughout the RIFF file) to be interpreted as Cyrillic or Japanese characters.

RIFF also defines a JUNK chunk whose contents are uninteresting. The chunk allows a chunk to be deleted by just changing its FourCC. The chunk could also be used to reserve some space for future edits so the file could be modified without being rewritten. A later definition of RIFF introduced a similar PAD chunk.

  • WAV
Adapted from content published on wikipedia.org
Last modified on July 24, 2019, 5:23 am
Videocide.com is a service provided by Codecide, a company located in Chicago, IL USA.