Sponge-like microphone shield thwarts undesirable noise from wind and rapid mike movement.

Windscreens (or windshields – the terms are interchangeable) provide a method of reducing the effect of wind on microphones. While pop-screens give protection from unidirectional blasts, foam “hats” shield wind into the grille from all directions and blimps/zeppelins/ baskets entirely enclose the microphone and protect its body as well. The latter is important because, given the extremely low-frequency content of wind noise, vibration induced in the housing of the microphone can contribute substantially to the noise output.

The shielding material used – wire gauze, fabric or foam – is designed to have a significant acoustic impedance. The relatively low particle-velocity air pressure changes that constitute sound waves can pass through with minimal attenuation, but the higher particle-velocity wind is impeded to a far greater extent. Increasing the thickness of the material improves wind attenuation but also begins to compromise high-frequency audio content. This limits the practical size of simple foam screens. While foams and wire meshes can be partly or wholly self-supporting, soft fabrics and gauzes require stretching on frames or laminating with coarser structural elements.

Since all wind noise is generated at the first surface the air hits, the greater the spacing between the shield periphery and microphone capsule, the greater the noise attenuation. For an approximately spherical shield, attenuation increases by (approximately) the cube of that distance. Thus larger shields are always much more efficient than smaller ones. With full basket windshields, there is an additional pressure chamber effect, first explained by Joerg Wuttke, which, for two-port (pressure gradient) microphones, allows the shield/microphone combination to act as a high-pass acoustic filter.

Since turbulence at a surface is the source of wind noise, reducing gross turbulence can add to noise reduction. Both aerodynamically smooth surfaces and ones that prevent powerful vortices being generated have been used successfully. Historically, artificial fur has proved very useful for this purpose since the fibers produce micro-turbulence and absorb energy silently. If not matted by wind and rain, the fur fibers are very transparent acoustically, but the woven or knitted backing can give significant attenuation. As a material, it suffers from being difficult to manufacture with consistency and to keep in pristine condition on location. Thus there is an interest (DPA 5100, Rycote Cyclone) to move away from its use.

In the studio and on stage, pop-screens and foam shields can be useful for reasons of hygiene and protecting microphones from spittle and sweat. They can also be useful colored idents. On location, the basket shield can contain a suspension system to isolate the microphone from shock and handling noise.

Stating the efficiency of wind noise reduction is an inexact science since the effect varies enormously with frequency, and hence with the bandwidth of the microphone and audio channel. At very low frequencies (10–100 Hz) where massive wind energy exists, reductions are important to avoid overloading of the audio chain – particularly the early stages. This can produce the typical “wumping” sound associated with wind, which is often syllabic muting of the audio due to LF peak limiting. At higher frequencies – 200 Hz to ~3 kHz – the aural sensitivity curve allows us to hear the effect of wind as an addition to the normal noise floor, even though it has a far lower energy content. Simple shields may allow the wind noise to be 10 dB less apparent; better ones can achieve nearer to a 50 dB reduction. However, the acoustic transparency, particularly at HF, should also be indicated, since a very high level of wind attenuation could be associated with very muffled audio.

also known as
  • Windshield
Last modified on October 6, 2019, 3:07 pm is a service provided by Codecide, a company located in Chicago, IL USA.